Improved Iterative Curvelet Thresholding for Compressed Sensing
نویسنده
چکیده
A new theory named compressed sensing for simultaneous sampling and compression of signals has been becoming popular in the communities of signal processing, imaging and applied mathematics. In this paper, we present improved/accelerated iterative curvelet thresholding methods for compressed sensing reconstruction in the fields of remote sensing. Some recent strategies including Bioucas-Dias and Figueiredo’s two-step iteration, Beck and Teboulle’s fast method, and Osher et al’s linearized Bregman iteration are applied to iterative curvelet thresholding in order to accelerate convergence. Advantages and disadvantages of the proposed methods are studied using the so-called pseudo-Pareto curve in the numerical experiments on single-pixel remote sensing and Fourier-domain random imaging.
منابع مشابه
Compressed sensing by inverse scale space and curvelet thresholding
Compressed sensing provides a new sampling theory for data acquisition, which says that compressible signals can be exactly reconstructed from highly incomplete sets of linear measurements. It is significant to many applications, e.g., medical imaging and remote sensing, especially for measurements limited by physical and physiological constraints, or extremely expensive. In this paper we propo...
متن کاملEvolving Geophysics Through Innovation
Continuity along reflectors in seismic images is used via Curvelet representation to stabilize the convolution operator inversion. The Curvelet transform is a new multiscale transform that provides sparse representations for images that comprise smooth objects separated by piece-wise smooth discontinuities (e.g. seismic images). Our iterative Curvelet-regularized deconvolution algorithm combine...
متن کاملIterative methods for random sampling and compressed sensing recovery
In this paper, two methods are proposed which address the random sampling and compressed sensing recovery problems. The proposed random sampling recovery method is the Iterative Method with Adaptive Thresholding and Interpolation (IMATI). Simulation results indicate that the proposed method outperforms existing random sampling recovery methods such as Iterative Method with Adaptive Thresholding...
متن کاملSparse Recovery Algorithms: Sufficient Conditions in terms of Restricted Isometry Constants
We review three recovery algorithms used in Compressive Sensing for the reconstruction s-sparse vectors x ∈ CN from the mere knowledge of linear measurements y = Ax ∈ Cm, m < N. For each of the algorithms, we derive improved conditions on the restricted isometry constants of the measurement matrix A that guarantee the success of the reconstruction. These conditions are δ2s < 0.4652 for basis pu...
متن کاملA Convergent Iterative Hard Thresholding for Nonnegative Sparsity Optimization
The iterative hard thresholding (IHT) algorithm is a popular greedy-type method in (linear and nonlinear) compressed sensing and sparse optimization problems. In this paper, we give an improved iterative hard thresholding algorithm for solving the nonnegative sparsity optimization (NSO) by employing the Armijo-type stepsize rule, which automatically adjusts the stepsize and support set and lead...
متن کامل